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Abstract. The Lagrangian 1
2 ε0c

2∂µAν∂
µAν is shown to yield a non-gauge-invariant theory of electromag-

netism. The potential is uniquely determined by the inhomogeneous wave equation and boundary conditions
at infinity. The Lorenz condition and minimal coupling follow from charge conservation. Electromagnetic
spin is conserved and a spin operator is proposed without sacrificing covariance. Covariant quantisation is
carried out without redefining the metric. It is a valid alternative to the standard approach since it makes
the same experimental predictions.

PACS. 03.50.De Classical electromagnetism, Maxwell equations – 42.50.-p Quantum optics

Maxwell’s equations express electromagnetism in terms of
the electric and magnetic fields, Fµν . They imply that a
potential field Aµ can be defined through Fµν = ∂µAν −
∂νAµ, but only up to a contribution of the form ∂µχ, with
χ an undefined scalar field. In spite of its incomplete def-
inition, it is Aµ and its derivatives, not Fµν , that con-
stitute the functional variables in Lagrangian formalism.
The equations can be derived from the standard [1] gauge-
invariant

LST =
1
4
ε0c

2FµνF
µν (1)

or any equivalent Lagrangian differing from it by a
four-divergence. Such Lagrangians, however, yield non-
gauge-symmetric Noether conservation laws, asymmetric
energy-momentum tensors, non-conserved spin and disal-
low quantisation. Interaction with matter is implemented
by addition to equation (1) of a matter Lagrangian, Lm,
derived from the free matter Lagrangian by the minimal
substitution, pµ → pµ−eAµ. Clearly, Lm also is not gauge-
invariant. Although corrective procedures [2] can be found
in any textbook on field theory, it would be preferable to
avoid these problems from the beginning.

In this paper the Fermi Lagrangian is explored,

LF =
1
2
ε0c

2∂µAν∂
µAν (2)

as an alternative to equation (1). This Lagrangian gives
rise to wave equations for Aµ, which were employed in
Fermi’s pioneering paper on field quantisation [3]. LF

and its associated Noether currents are occasionally dis-
cussed [4–8] in the context of covariant quantisation, but
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to my knowledge no study exists of the full consequence
of LF as the starting point of electromagnetic field theory.

It will first be shown how the wave equation, furnished
with boundary conditions at infinity, uniquely determines
the field and that charge conservation leads to the Lorenz
condition. Then the conservation laws are discussed and a
spin operator is defined. Subsequently, minimal coupling is
derived from charge conservation and the force density is
discussed. A simple application of the formalism is given.
Finally, covariant quantisation is discussed and it is argued
that there is no need for a redefinition of the metric.

Consider a Lagrangian consisting of a field and a mat-
ter part with minimal substitution, that is L = LF + Lm.
The field equations of motion are the inhomogeneous wave
equations

∂λ∂
λAµ = −µ0jµ (3)

with

−µ0jµ = ∂Lm/∂A
µ. (4)

Now adopt as a boundary condition that Aµ = 0 in a
point P = (r, t) if jµ = 0 in the entire light cone of P.
The derivatives of Aµ also vanish, if jµ = 0 in the union
of the light cones of an infinitesimal environment of P.
With this, equation (3) fully determines Aµ in the point
P if jµ is specified in the entire light cone of P, for the
difference of two fields must vanish if they correspond to
the same current distribution in the entire light cone of
P. An equivalent statement of the boundary condition is
that a source at P does not contribute to the potential
outside the lightcone of P.

Maxwell’s equations follow from equation (3) and the
Lorenz condition, ∂µAµ = 0. It is now shown that the
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Lorenz condition follows from charge conservation, ∂µjµ =
0, which in turn requires that Lm is real. Indeed, from
this and equation (3) it follows that ∂λ∂λ∂µAµ = 0 in the
entire Minkowski space, or, in k-space, kλkλkµAµ(k) = 0.
This implies kµAµ = 0 or kµkµ = 0, or both. If kµkµ = 0
then Aµ is a solution of the free wave equation in entire
Minkowski space and must vanish due to the boundary
condition. This leaves the possibility that kµAµ(k) = 0,
so that ∂µAµ = 0. Thus the Lorenz condition is fulfilled
if and only if charge is conserved. It is a consequence of a
property of matter and in no way an intrinsic restriction
of the degrees of freedom of Aµ. This also means that,
whereas in the standard (gauge invariant) theory “non-
conservation of charge is inconceivable” [9], this is not the
case here.

Another consequence of charge conservation is minimal
coupling. If the charged matter is described by a complex
field ψ, the conserved current is given by

jµ =
e

2i
∂Lm

∂(∂µψ)
ψ + c.c. (5)

This expression is equal to equation (4) only if ∂µψ, ∂µψ∗
and eAµ occur in Lm in the combinations i∂µψ − eAµ
and i∂µψ∗+ eAµ. Thus minimal coupling is necessary and
sufficient to assure current conservation in equation (4).

The field conservation laws are obtained in a straight-
forward manner by application of Noether’s theorem to
LF. The field energy-momentum density is

T µνf = ε0c
2∂µAρ∂

νAρ − gµνLF. (6)

Tf is symmetric under exchange of its indices, as required
by the proportionality of energy flux and momentum den-
sity (Ref. [10], §32). Equation (6) also coincides with the
definition of the energy-momentum tensor in general rel-
ativity, ∂L/∂gµν, which is always symmetric. LF is the
unique Lagrangian that yields an energy momentum ten-
sor with these properties. It is important to note that the
total energy-momentum,

∫
d3x(T 0µ

f + T 0µ
m ), including the

matter contribution, has the same value as in the standard
theory. Still, the distribution of energy-momentum, which
is not an experimentally accessible quantity, is different.
Moreover a quantity of energy-momentum of

∫
d3xj0Aµ

that is attributed to the matter energy-momentum in
the standard theory is attributed to the field energy-
momentum here. As a consequence the energy density
of the field is not positive definite. Notably, an electro-
static field exhibits a negative energy density. The momen-
tum density of static fields strictly vanishes, whereas the
Poynting vector ascribes momentum density to crossed
static electric and magnetic fields [11].

The different partition of energy-momentum density
between matter and field yields a density of force exerted
on the matter that differs from the Lorentz force, namely

fµm = ∂λT
λµ
m

= −∂λT λµf

= −jλ∂µAλ. (7)

As an example, consider a system of interacting classi-
cal point charges. The Lorentz force on a single particle
equals the rate of change of d(pµi )/ds = md(uµi )/ds. How-
ever, in the presence of a field this does not correspond to
a conserved momentum so that the Lorentz force does not
obey Newton’s third law [12]. On the other hand, the force
given by equation (7) equals the rate of change of the con-
served [13] total particle momentum

∑
i(mu

µ
i − qAµ(ri))

and does obey Newton’s third law. The Lorentz force law
follows from equation (7) by setting the rate of change of
particle momentum, d(muµi − qAµ(ri))/ds, equal to the
r.h.s. of equation (7).

The field angular momentum density is

Jλµνf = xµT λνf − xνT λµf + ∂λA
µAν − ∂λAνAµ. (8)

The first two terms on the r.h.s. represent the field or-
bital momentum density, which is conserved because of
the symmetry of T µνf . The remaining terms represent spin
angular momentum, which is separately conserved because
Lf is invariant under Lorentz transformations of Aµ alone.
In fact, this interpretation fulfills the requirement [14] that
the total angular momentum reduces to spin in the rest
frame. The rest frame of a field can be defined as the one in
which the total momentum vanishes. For a massless trav-
elling wave the momentum can be made arbitrarily small
by a suitable choice of frame, but not vanish. The orbital
angular momentum vanishes quadratically, while the spin
vanishes linearly. If the field is normalised to have energy
~ω, the spin equals ±~ and the orbital angular momentum
vanishes linearly. For a standing wave the interpretation is
completely straightforward: both linear and orbital angu-
lar momentum vanish so what remains can only be spin.

As an example consider a plane wave with circular po-
larisation,

Ax = A cos(ωt− kz)

Ay = A sin(ωt− kz). (9)

The angular momentum density is equal to Sz = Sxy =
ωA2. In the standard theory, on the other hand, only
orbital angular momentum density exists and, since the
Poynting vector is along z, its z-component vanishes. The
total spin is equal and the difference is recovered in regions
of space where the wave is not plane and consequently the
Poynting vector no longer parallel to the z-direction. If a
light absorbing disc with cross-section D is placed in the
bundle, as shown in Figure 1, it will experience a torque
Nz [15]. Nz is equal to the rate of spin absorption, so
that Nz = cSzD. The same reasoning would yield zero
torque in the standard theory, because the z-component
of angular momentum density vanishes. In the standard
approach the torque is associated with field angular mo-
mentum generated behind the absorber. At the edge of the
cylindrical shadow cast by the disk a sharply peaked dis-
tribution of angular momentum pointing in the negative
z-direction occurs. Clearly, the standard description is far
from straightforward.
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Fig. 1. When an absorbent disk (A) is placed in a plane circu-
larly polarised wave (L) casting a shadow (S), it will experience
a torque. In the present approach this equals the rate at which
spin density is absorbed. In the standard approach angular mo-
mentum is conserved because a sharply localised negative spin
density forms at the edge of the shadow region.

It is now straightforward to define spin operators. The
expression for the total spin,

Sµν =
∫

d3xSµν0

=
∫

d3x(∂0A
µ)Aν − (∂0A

ν)Aµ, (10)

has the form of an expectation value of the operator

(gναg
µ
β − gνβgµα)∂0. (11)

Clearly, eigenfuctions of this operator should be station-
ary, that is they should be eigenfunctions of ∂0. For a real
vector field this condition has to be relaxed in the fol-
lowing way: (1) Aµ is an eigenfunction of ∂2

0 and (2) ∂0

shifts the phase of Aµ by π/4 in addition to multiplica-
tion by ω. Denoting the phase shift operation byR one has
∂0A

µ = ωRAµ. The factor ω can be absorbed into the nor-
malisation of the field. Notably, if the field is normalised
to carry energy ~ω the factor ω combines with the normal-
isation

√
~/ω to give a factor ~. For simplicity ~ is now set

to unity. The operator R replaces the imaginary number
i, which is the π/4 operator in the Klein-Gordon case. For
example, one has R2 = −1. For a particular propagation
direction the spin operator can now be written as

Sµν =
1
R

(gναg
µ
β − gνβgµα). (12)

The commutation relations are

[Sµν , Sρσ] =
1
R

(gνρSµσ + gµσSνρ

− gµρSνσ − gνσSµρ). (13)

These contain the proper commutation relations of the
3D pseudovector operator Si = εijkSjk. One can de-
fine S+ and S− operators with R replacing i. For the
circularly polarised wave |A〉 propagating along z given
by equations (9) one has Sz|A〉 = |A〉. It is straight-
forward to check that S+|A〉 = 0 and that (S−)2|A〉
is an eigenfunction of Sz with −1. One has S−|A〉 =√

2(0, 0, 0, sin(ωt − kz)), which is an eigenfunction of Sz

with vanishing eigenvalue. This longitudinal wave belongs
to the Hilbert space but cannot be observed because of
charge conservation. It is easily verified that similar con-
clusions hold for the general eigenfunction of Sz,

Aµ = x̂(sin(ωt)f(k · r) + cos(ωt)g(k · r))

+ ŷ(cos(ωt)f(k · r)− sin(ωt)g(k · r)).

Equations (12, 13) define a second set of spin operators,
S̃i = S0i, with eigenfunctions that cannot be observed
because of charge conservation.

Now that the validity of the classical theory has been
established, the problems encountered in the covariant
field quantisation procedure [8], are discussed. Quantisa-
tion is achieved by interpreting the total free field energy,

HF =
∫

d3xT 00
f

=
1
2
ε0c

2
z∑
i=0

∫
d3x

(
(∂iA)2 − (∂iA0)2

)
(14)

as the Hamiltonian of a collection of harmonic oscillators.
The commutation relations between the creation and an-
nihilation operators are

[aµ(m), a+
ν (m′)] = gµνδ(m−m′), (15)

where m is a discrete or continuous variable designating
the field mode created by a(m). For a travelling plane
waves m stands for k. Equation (15) implies that

[a0(m), a+
0 (m′)] = −δ(m−m′), (16)

which gives

〈a+
0 (m)ψ0|a+

0 (m′)ψ0〉 ≤ 0, (17)

where ψ0 is the ground state. This constitutes a contradic-
tion if equation (15) is interpreted as a relation between
components of Aµ and gµν . The problem disappears, how-
ever, if a+µ(k) and aµ(k) are interpreted as Lorentz vec-
tors with µ-polarisation. In this case equations (15, 16)
involve a scalar product. The distinction between a vec-
tor and its components can be emphasized by denoting
a+(µ)(m) and a(µ)(m). This suggests the possibility to de-
fine scalar operators a(m) by

a(µ)(m) = e(µ)a(m) (18)

and likewise for a+(m). Here the e(µ) are unit vectors that
are obtained from gµν by fixing one of the indices and obey

e(µ)
α e(ν)α = gµν . (19)

From the postulate

[a(m), a+(m′)] = δ(m−m′), (20)

combined with definition (18) and equation (19), equa-
tion (15) is recovered. This procedure has the advantage
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that the commutativity of orthogonally polarised fields fol-
lows from equation (19) and needs not to be postulated.
The norm of a photon state is positive definite, since from

〈a+(0)(m)ψ0|a+(0)(m′)ψ0〉 =

g00〈a+(m)ψ0|a+(m′)ψ0〉 ≤ 0, (21)

it follows that

〈a+(m)ψ0|a+(m′)ψ0〉 ≥ 0. (22)

It is easily checked that the photon number operator is

N(m) = a+(m)a(m). (23)

The probability interpretation of quantum mechanics is
thus maintained, as well as Lorentz covariance, and the no-
torious “indefinite metric” problem is avoided. The Lorenz
condition is implemented simply by using only polarisa-
tions that obey

kµε
µ = 0, (24)

where εµ is the polarisation of the potential.
In summary, it was shown that the Lagrangian

LF = 1
2 ε0c

2∂µAν∂µAν leads to a valid theory of electro-
magnetism with a uniquely defined potential. The Lorenz
condition and minimal coupling emerge as consequences of
charge conservation. The canonical spin density is covari-
ant and conserved and permits the definition of a photon

spin operator. The “indefinite metric” problem encoun-
tered in the covariant quantisation procedure is avoided.

References

1. The convention gµν = diag(−1, 1, 1, 1) is adopted.
2. F.J. Belinfante, Physica 7, 449 (1940).
3. E. Fermi, Rend. Lincei 9, 881 (1929); W. Pauli, W.

Heisenberg, Z. Phys. 59, 168 (1930).
4. A.I. Achieser, W.B. Berestezki, Quantenelektrodynamik

(Teubner, Leipzig, 1962).
5. J.M. Jauch, F. Rohrlich, The theory of photons and elec-

trons, 2nd edn. (Springer Verlag, 1976).
6. N.N. Bogolyubov, D.V. Shirkov, Introduction to the The-

ory of Quantized Fields (Wiley, New York, 1980).
7. F. Mandl, G. Shaw, Quantum Field Theory (Wiley, Chich-

ester, 1984).
8. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Pho-

tons and Atoms (Wiley, New York, 1989).
9. J. Schwinger, Theoretical Physics (IAEA, Trieste, 1962).

10. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields
(Pergamon, Oxford, 1979).

11. W.K.H. Panofsky, M. Phillips, Classical Electricity and
Magnetism (Addison-Wesley, Reading, 1956).

12. This is clear for two point charges moving at right angles
in a common plane. Due to the magnetic interaction one
has for the Lorentz force F12 ⊥ F21.

13. The absence of radiation effects is assumed.
14. S.J. van Enk, G. Nienhuis, Europhys. Lett. 25, 497 (1994);

J. Mod. Opt. 41, 963 (1994).
15. R.A. Beth, Phys. Rev. 48, 471 (1935); ibid. 50, 115 (1936).


